An effective asymptotic formula for the Stieltjes constants
نویسندگان
چکیده
The Stieltjes constants γk appear in the coefficients in the regular part of the Laurent expansion of the Riemann zeta function ζ(s) about its only pole at s = 1. We present an asymptotic expression for γk for k 1. This form encapsulates both the leading rate of growth and the oscillations with k. Furthermore, our result is effective for computation, consistently in close agreement (for both magnitude and sign) for even moderate values of k. Comparison to some earlier work is made.
منابع مشابه
New results on the Stieltjes constants: Asymptotic and exact evaluation
The Stieltjes constants γk(a) are the expansion coefficients in the Laurent series for the Hurwitz zeta function about s = 1. We present new asymptotic, summatory, and other exact expressions for these and related constants.
متن کاملAN ASYMPTOTIC FORM FOR THE STIELTJES CONSTANTS γk(a) AND FOR A SUM Sγ(n) APPEARING UNDER THE LI CRITERION
We present several asymptotic analyses for quantities associated with the Riemann and Hurwitz zeta functions. We first determine the leading asymptotic behavior of the Stieltjes constants γk(a). These constants appear in the regular part of the Laurent expansion of the Hurwitz zeta function. We then use asymptotic results for the Laguerre polynomials Ln to investigate a certain sum Sγ(n) involv...
متن کاملSeries representations for the Stieltjes constants
The Stieltjes constants γk(a) appear as the coefficients in the regular part of the Laurent expansion of the Hurwitz zeta function ζ(s, a) about s = 1. We present series representations of these constants of interest to theoretical and computational analytic number theory. A particular result gives an addition formula for the Stieltjes constants. As a byproduct, expressions for derivatives of a...
متن کاملAn Explicit Formula Relating Stieltjes Constants and Li’s Numbers
In this paper we present a new formula relating Stieltjes numbers γn and Laurent coefficinets ηn of logarithmic derivative of the Riemann’s zeta function. Using it we derive an explicit formula for the oscillating part of Li’s numbers ∼ λn which are connected with the Riemann hypothesis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 80 شماره
صفحات -
تاریخ انتشار 2011